The Evolution of Erlang Drivers and
the Erlang Driver Toolkit

Scott Lystig Fritchie
Snookles Music Consulting
Minneapolis, Minnesota, USA

slfritchie@snookles.com

ABSTRACT

Erlang is gaining a reputation as a good language for rapid
prototyping, but one area where its reputation is weaker
than those of traditional scripting languages is extensibility.
Erlang is actually fairly easy to extend, but the learning
curve is steep. To reduce the time necessary to create Er-
lang extensions, called “drivers,” for existing code libraries
written in C, the Erlang Driver Toolkit (EDTK) was devel-
oped. Its code generator can produce all or nearly all of
the Erlang and C code required to implement both major
types of Erlang drivers. Although it is still under active
development, EDTK has already proven to be a time- and
effort-saving tool for creating robust, full-featured driver ex-
tensions for three well-known Open Source C libraries.

General Terms
Erlang, language extensibility, functional programming, code
generation

1. INTRODUCTION

Erlang receives a lot of well-deserved recognition for sup-
porting development of fault-tolerant, distributed, soft real-
time applications. It also has a growing reputation as a
rapid prototyping environment. The combination of these
traits creates something remarkable: rapid development of
prototypes that are good enough for use in production sys-
tems.

There is one area, however, where Erlang’s reputation for
quick development of effective code is not very good: devel-
opment of “drivers” used to extend the base functionality
of the language. The Erlang Questions mailing list [4] has
received numerous queries for extension drivers for Dialogic
and other telecom interface cards, for databases such as Or-
acle and Sybase, for mmap() and System V shared memory,
for the message-passing library MPI, and many others. A
small fraction of these people have actually implemented the
wished-for driver themselves. At least one such motivated

Permission to make digital or hard copies of part or all of this work for

list subscriber, however, halted development of his driver
due in part to the effort required by the initial implementa-
tion [8].

Writing an Erlang driver is well within the reach of a mod-
estly skilled Erlang programmer who is also familiar with
C or some other programming language. However, it takes
a well-motivated individual to locate the documentation on
writing drivers, find and study the source code for a variety
of existing drivers, and so on. The Erlang Driver Toolkit
(EDTK) was begun by the author as a collection of Erlang
and C tools to reduce the amount of time and effort spent
writing code that is inevitably similar for most drivers.

EDTK has developed into a code generator capable of pro-
ducing all or almost all of the Erlang and C code necessary
to create Erlang drivers for existing C libraries. The EDTK
compiler can implement drivers using both techniques sup-
ported by the Erlang virtual machine: as an external oper-
ating system process or as a dynamically-loadable library.
EDTK has been used to generate functional and robust
drivers for three well-known Open Source libraries: libnet (a
network packet creation and transmission library), libpcap
(a network packet capture and filtering library), and Berke-
ley DB (a commercially-supported embedded database).

Section 2 makes a small survey of how three popular script-
ing languages provide their well-known extensibility and con-
trasts them with Erlang’s extensibility mechanism. Sec-
tion 3 examines related work in the area of interface code
generators and extensibility. Section 4 explores some of the
issues that make extensibility a tougher problem for Erlang
than many other languages. Section 5 presents a high-level
overview of the EDTK driver code generator and discusses
why it was developed the way it was. Section 6 looks at how
EDTK implements a small example driver. Section 7 sum-
marizes the experience the author has had using EDTK to
develop drivers for non-trivial third-party C libraries. Sec-
tion 8 suggests areas for future development of EDTK. Sec-
tions 9 and 10 present conclusions and describe how to ob-

personal or classroom use is granted without fee provided that copies are notain more information about EDTK.

made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with 2. LANGUAGE EXTENSIBILITY

credit is permitted. To copy otherwise, to republish, to post on servers, or to Many programming languages become popular not only be-
redistribute to lists, requires prior specific permission and/or a fee. Requestcaygse they provide a useful core of features, but also be-
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

ACM SIGPLAN Erlang Workshdp2 Pittsburg, PA USA

Copyright 2002 ACM 1-58113-592-0/02/8%5.00

cause they have mechanisms for extending the language be-
yond what their designers originally intended. The exten-
sion mechanisms of three languages, Tcl, Python, and Perl,

are briefly examined in order to provide context for compar-
ison to Erlang’s extension mechanism, the “port.”

2.1 Extensibility Mechanisms of Other
Languages
2.1.1 Tl

Tcl was originally designed as a simple command interpreter
to be embedded in other applications. Tcl’s fundamental
data type is the string: Tcl objects are converted to and
from strings as necessary.

Additional commands are added to Tcl by calling Tcl_-
CreateCommand (), which registers a callback function with
the interpreter. Each callback function receives the com-
mand’s arguments as strings via a convention that should
look familiar to all C programmers: (..., int argc, char
xargv[]). The callback function must parse these strings
before calling the “real” extension function. The result(s)
are returned to the interpreter as a string or as a Tcl object,
using functions such as Tcl_SetResult() and Tcl_Set0Obj-
Result ().

2.1.2 Python

The C extension code of a Python extension module is re-
sponsible for data conversion to and from Python structures.
The module’s initialization function calls Py_InitModule ()
to register C extension functions with the interpreter. In
the simplest and most common case, this registration will
require the interpreter to pass all arguments to the extension
function as a tuple. The extension function will use PyArg_-
Parse() to parse the tuple and copy its values into local C
variables. After the “real” extension function is called, the
results are typically sent back to Python using Py Build-
Value().

2.1.3 Perl

Perl’s popularity as an extensible language rose dramatically
with the introduction of the XS language, which specifies an
interface between Perl and an existing C library. XS func-
tions can directly manipulate underlying Perl data struc-
tures: scalars, hashes, and arrays. Macros are provided for
creating these structures, converting them to and from C
data types, and changing their reference counts. XS also
provides facilities such as custom initialization of function
arguments and the ability to insert verbatim C/C++ code
into the XS preprocessor’s output when XS alone is insuffi-
cient to make the interface work.

The XS preprocessor generates much of the glue code re-
quired for the extension, including registering the extension
functions with the interpreter. If the C library’s API is sim-
ple or even moderately complex, no additional C code is typ-
ically required to complete the extension interface. In con-
trast, both Tcl and Python extensions require a fair amount
of glue code to be written manually or by a code generator.

2.2 Erlang’s Port Mechanism

Erlang extensibility mechanism is called a “port.” The vir-
tual machine copies data through the port to and from the
port’s “driver,” which actually implements the language ex-
tension.

The port identifier data type is used in a manner similar to
the process identifier data type. Messages can be sent to a
driver through a port by using the same operator, !, used to
send messages to regular Erlang processes. Messages sent by
drivers to Erlang are also received using the same operator,
receive. Messages sent in either direction are restricted by
convention in order to simplify the interface.

2.2.1 Pipe Drivers

The first implementation of a port connects the virtual ma-
chine to an external operating system process via a pair of
pipes, enabling bi-directional communication. The Erlang
side sends a message to the driver in the form Port ! {self(),
{command, Message}}, where Message is a list of bytes to
be sent to the external process. The external process side
reads Message’s bytes from the pipe, parses them, then sends
the driver’s results as a formatted stream of bytes via the
other pipe. The virtual machine places those bytes into the
mailbox of the port’s owner process using the tuple {Port,
{data, ListOfBytes}}. This completes the illusion that a
port is simply a special kind of Erlang process.

“Pipe drivers” are flexible. The external process can be
implemented in C or any other language that can perform
I/O on standard input and output file descriptors. Even a
Bourne shell script can implement a simple driver. The sep-
aration of processes protects the virtual machine from any
bug present in the driver. The tradeoff is performance: due
to extra data formatting and copying and due to operating
system process context switching, the cost of communicating
with the external process is high.

2.2.2 Linked-in Drivers

To reduce communication overhead experienced with pipe
drivers, a “linked-in” driver API was developed.! This API
permits the driver’s code to execute within the virtual ma-
chine’s process context. It also preserves the illusion to
Erlang that ports are almost like other Erlang processes;
therefore, data sent to and from the driver still requires se-
rialization, just like pipe drivers do.

To further lower driver overhead, two other innovations have
been helpful. One, drivers can return data using the bi-
nary data type (an untyped chunk of bytes) instead of lists
of individual bytes. Binaries make both kinds of drivers
more efficient because they avoid creating and traversing
lists that may be hundreds or thousands of elements long.
Two, linked-in drivers can now create arbitrarily-formatted
Erlang terms and send them directly to an Erlang process,
bypassing the serialization step.

Linked-in drivers compromise safety for the sake of speed.
They are much riskier to use than pipe drivers: a driver bug
can crash the entire virtual machine and all applications
running within it. On the other hand, the latency of com-
municating with a pipe driver can be 10-25 times greater
than with a linked-in driver.

!This term is used to describe C drivers that are statically-
linked to the virtual machine as well as dynamically-loaded
drivers.

3. RELATED WORK

Automatic code generation tools have been around for al-
most as long as programmers have. Two obvious reasons for
the popularity of these tools are speed and correctness. It is
typically much quicker to write a specification for input to a
code generator than it is to write the code that would other-
wise be created by the generator. Code generators excel at
writing the kind of code that is repetitive; programmers find
writing such code tedious, boring, and error-prone. Also, it
is typical to save time and to improve code quality by de-
bugging a code generator once rather making multiple passes
through manually-written code.

Code generators are frequently used today for tasks such
as creating interfaces to database systems and for creating
graphical user interfaces. Discussion here is limited to tools
used for language and/or application extensibility.

3.1 RPC Tools

Many code generating tools have been developed for use in
inter-process communication and RPC (Remote Procedure
Call) environments, including those used in applications us-
ing Sun Microsystem’s RPC and the Object Management
Group’s CORBA. These tools generate client and server
stub functions as well as the serialization code required to
carry data structures across network transport. As such,
they perform several tasks that writing an Erlang driver also
requires, but their network-centric architecture make them
difficult to adapt to a pipe driver’s much simpler require-
ments. Furthermore, they cannot provide much assistance,
beyond serialization, for linked-in driver development.

3.2 SWIG

SWIG [1] is a popular Open Source tool for generating code
specifically for language extensions. Using a common speci-
fication file, SWIG generates all of the glue code required to
create extensions for many languages, including Guile, Java,
Perl, Python, Ruby, and Tcl.

The specification file conforms largely to ANSI C/C++ syn-
tax, which can greatly reduce the amount of effort necessary
to create a SWIG specification. For a simple library, the
header file defining its data structures and function proto-
types can be used without modification. SWIG is designed
to be a complete glue code generator: there is rarely need
to manually write any additional glue code.

SWIG'’s capacity for generating language extension glue code
is quite remarkable. Its current release is probably capa-
ble of generating much of the code that EDTK’s GSLgen
templates currently create. The main reason for not using
SWIG for EDTK’s generator was time: it was unclear how
many changes to the SWIG specification file syntax would
be required to support Erlang drivers and thus difficult to
estimate how many man-months of effort it would take to
develop a prototype.

33 IG

IG is an Erlang driver generation tool originally distributed
with Erlang. Its specification file also bears a strong resem-
blance to ANSI C data and function declaration syntax. It
generates pipe driver glue code for the C side as well as se-
rialization code for both the C and Erlang sides. Though

Copy a file
def filecopy(source,target):
f1 = fopen(source, "r")
f2 = fopen(target, "w")
buffer = malloc(8192)
nbytes = fread(buffer,8192,1,f1)
while (nbytes > 0):
furite(buffer,8192,1,f2)
nbytes = fread(buffer,8192,1,f1)
free(buffer)

Figure 1: Multiple-assignment in Python using a
SWIG-generated interface

%module fileio

FILE *fopen(char *, char *);

int fclose(FILE *);

unsigned fread(void *ptr, unsigned size,
unsigned nobj, FILE *);

unsigned fwrite(void *ptr, unsigned size,
unsigned nobj, FILE *);

void *malloc(int nbytes);

void free(void *);

Figure 2: SWIG specification for standard C library
functions

no longer maintained by Ericsson, IG’s original author has
publically released its source code [15].

4. ADDITIONAL CONSTRAINTS

Erlang and its runtime environment impose constraints on
driver authors and would-be driver generator authors that
many other languages do not have. These constraints are
examined here in order to explain why off-the-shelf solutions
to extensibility problems faced by other languages, such as
the languages mentioned in section 2.1, cannot be easily
applied to Erlang.

4.1 Single-Assignment Semantics

Erlang’s single-assignment semantics create the single largest
obstacle to a simple marriage of Erlang and C code. C does
not have such a constraint, so C libraries never worry about
it. A linked-in Erlang driver must avoid multiple-assignment
in every C function that uses pass-by-reference arguments.

Figure 1 demonstrates the problem single-assignment poses
to Erlang drivers. The Python code, taken from [14], uses an
interface generated by SWIG (see specification in Figure 2)
to give Python direct access to several standard C library
functions. Clearly, a direct translation of what SWIG does
in this example cannot be used by Erlang: the contents of
buffer are repeatedly clobbered inside the while loop. A
linked-in driver implementing fopen() has a limited num-
ber of implementation choices. First, the driver can allo-
cate a new immutable binary for each buffer’s worth of data
read by fread(). Second, the driver can hide any mutable
data structures inside the port itself: another driver func-
tion must be called to retrieve an immutable snapshot of the
data.

4.2 Serialization of Data

All data sent between Erlang and a pipe driver must be
serialized:? since the virtual machine and driver processes
are connected by a pair of pipes, there are few other op-
tions. Even if the two were to communicate using a network
protocol or through the file system, their internal data struc-
tures would still require serialization. An ideal Erlang driver
generation tool should create the required data serialization
code. As an additional feature, linked-in drivers should be
able to send arbitrary terms back to Erlang instead of seri-
alizing its results like pipe drivers must.

RPC-centric generators must address serialization because
of their use of network transport. However, their serializa-
tion code is typically burdened by other assumptions and
constraints, such as memory and network interface man-
agement. Using their serialization code outside of their
broader frameworks can be as, or more, cumbersome and
time-consuming as writing that code yourself.

4.3 Fault Tolerance

Erlang is well-suited for fault-tolerant, high availability ap-
plication programming. However, a fault-tolerant design can
be crippled by resource leaks, such as memory or file descrip-
tor leaks, as surely (though not as quickly) as a divide-by-
zero bug. The Python example in Figure 1 is illustrative
here. If this example were instead implemented in Erlang,
then depending on where the Erlang process crashed (or was
killed by an outside party), the driver may leak up to two
file descriptors and one hunk of memory.

Resource leak problems can be magnified by common Er-
lang programming practices that encourage coding only for
the common case. It is not unusual to simply let an Er-
lang process crash when it encounters an error or exception.
The OTP supervisor process behavior is used specifically for
managing such crashes and to restart dead processes.

If an application must run non-stop for months or years at a
time, resource leaks caused by bugs and unanticipated error
conditions cannot be tolerated. An ideal Erlang driver gen-
erator should provide facilities for managing scarce system
resources used by the driver and be able to release them if
the owner process should die.

4.4 Thread Management

Erlang release R7B introduced an asynchronous driver mech-
anism. The virtual machine can maintain a pool of worker
threads for use by any linked-in driver. All core virtual
machine activity still takes place in the main thread, but
linked-in drivers have the discretion to schedule work for ex-
ecution by the virtual machine’s worker thread pool. Worker
threads cannot directly access any of the main thread’s data
structures, but they are free to block for arbitrary periods
of time: the main thread remains independent and can con-
tinue executing Erlang processes.

The asynchronous driver mechanism is already used by parts
of the standard Erlang distribution. For example, access
to the host operating system’s file system is done via the

2Section 2.2.2 describes an alternate method for linked-in
drivers to send data back to Erlang.

efile_drv driver, which can execute all potentially blocking
file operations inside a worker pool thread. If the worker
thread pool is not enabled, the driver will automatically
execute those functions in the main (and only) thread.

An ideal driver code generator should provide the flexibility
to specify whether a driver should execute a function in the
main thread, utilize the thread worker pool, or use a private
thread managed by the driver itself. Such flexibility can be
used to achieve several goals:

e Manage libraries that contain a mix of thread-safe and
non-thread-safe member functions.

e Manage unpredictable resources, such as hardware de-
vices and lock managers.

e Take advantage of platforms with multiple CPUs with-
out running multiple Erlang virtual machines. The
virtual machine is still constrained to run in a sin-
gle thread and therefore can only fully utilize a single
CPU, but computation-intensive driver code can run
on multiple CPUs in parallel with potentially little ef-
fect on the virtual machine’s thread.

5. THE EDTK DRIVER GENERATOR

The Erlang Driver Toolkit started as a very modest project:
create a collection of library functions, both in Erlang and
in C, to ease the task of writing drivers for third-party C li-
braries. Development of those helper functions went quickly,
and they were indeed significant time-savers.

But as these helpers were used for drivers for several differ-
ent libraries, it became clear that even with the assistance of
a capable library, writing drivers can be very tedious work.
The prospect of automating most of the code generating
process became extremely attractive. The new goal became
writing a code generator, since a lot of a driver’s C code
(both pipe and linked-in drivers) and Erlang code is boiler-
plate, common to most drivers.

5.1 Design Goals

The EDTK code generator has grown in fits and starts,
which is not surprising for a part-time programming project.
It would be disingenuous to claim that its design goals and
constraints were fully specified before the first line of code
was written. With the clarity of hindsight, however, these
are the generator’s major design goals:

1. Quickly develop a prototype. Refactoring or even
completely rewriting the tool is likely, so learn as much
as possible from a usable prototype first. To para-
phrase Brooks, it’s worthwhile to grow a program even
if you eventually throw it away [3].

2. Create a time-saver, not a labor-eliminator. The
intent is to automate the most tedious and error-prone
tasks associated with creating an Erlang driver. Gen-
erating all required glue code would be an extra bonus.

3. Support both driver types. The generator should
be able to create code for pipe and linked-in drivers.
Furthermore, linked-in drivers should be able to utilize
the asynchronous worker thread pool.

Input XML file

<?xml version="1.0"7>
<tree>
<entity name="World">
<greeting type="Hello"/>
</entity>
<entity name="Planet">
<greeting type="Salutations"/>
</entity>
</tree>

Input schema file

.ignorecase = 0
#!/bin/sh

.for entity
for greeting

echo "$(.type), $(entity.name)!"
endfor

.endfor

Output file

#!/bin/sh

echo "Hello, World!"
echo "Salutations, Planet!"

Figure 3: Example GSLgen output

5.2 Quick Prototyping with GSLgen

iMatix Corporation has released a number of code genera-
tion tools with open licenses. One of those tools, GSLgen
[6], is a general-purpose file generation tool. Given inputs
of an XML file [2] and a schema template file, the schema
template tells GSLgen how to traverse the XML tree and
what to output.

GSLgen is similar to PHP [13], Microsoft Active Server
Pages [7], and other “server-side parsed” World Wide Web
content management tools. Instead of serving HTML files
verbatim, the Web server scans HTML template files for
specific tags or keywords and interprets their contents as a
scripting language. The result of executing those instruc-
tions is inserted into the HTML file in place of the original
tags before transmission to the client.

A GSLgen schema can be used to generate HTML files, C
or C++ files, or whatever a developer wishes. Figure 3
gives a tiny example of an XML file, a GSLgen schema file,
and the corresponding GSLgen output. As noted in the
introduction to section 5, much of an Erlang driver’s code
is boilerplate. GSLgen appeared to be an excellent tool for
generating driver glue code from a set of templates, so it
was chosen to create the EDTK code generator.

5.3 EDTK XML File Structure Overview

This section discusses each of the element types found in
an EDTK XML specification file and how attributes of one
element are cross-referenced to other elements. See Figure 4,
which depicts the element hierarchy of an EDTK XML file.

5.3.1 The func, arg, and return Elements

There is a func element for each C library function the driver
is capable of calling. It may have multiple arg child elements
that must appear in the order in which they will be called
by both the Erlang and C sides of the driver glue code.

Attributes of the arg element specify the argument’s C type,
describe how it should be serialized when sent to the driver,
and other characteristics of the argument. For example,
an argument may be omitted from the Erlang side or the
C side of the function’s signature by adding the attributes
noerlcall="1" and noccall="1", respectively.

A single return child element is mandatory for each func
element. Like the func element, it specifies the C type of
the return value (even if the function’s return value is void)
and how that value, containing the function’s results, should
be returned to Erlang.

An optional pair of attributes, expect and expect_errval,
can set the criteria by which the return value should be
considered normal or in error; this expectation definition
can affect the format of the tuple returned to Erlang. The
optional valmap_name and xreturn attributes cross-reference
elements of types valmap and xtra_return, respectively.

5.3.2 The valmap Element

Short for “value map,” a valmap element is used by the
generator’s C template to maintain a mapping between C
data values and Erlang terms. These elements are most
useful for memory pointers, file descriptors, and anything
else that the driver needs to deallocate, close, or otherwise
clean up when the driver is closed by a port_close/1 call or
by abnormal process termination.

A value map term is opaque as far as Erlang is concerned.
It is represented by a tuple such as {valmap NAME, Index}.
The driver uses Index’s value as the index into an internal
value map table.

A value map makes it very difficult for Erlang to pass invalid
values into the driver. When combined with expectation at-
tributes on a return element, the C template can guarantee
that only valid values can be inserted into a value map.

The order in which valmap elements appear in the XML
file is important. When the driver’s stop entry function is
called, value maps will be closed and deallocation/cleanup
functions will be called in the order in which the valmap
elements appear in the XML file.

In the current implementation, only a function’s return value
can be inserted into a value map. For functions that do not
follow this convention, a small wrapper function must be
created manually to rearrange the API.

5.3.3 The xtrareturn Element Hierarchy

Early versions of the EDTK generator templates could only
return a single value (an atom, a binary, or an integer) to Er-
lang. It became apparent that more flexibility was needed.

The xtra_return element hierarchy defines a 1-to-1 mapping
of XML elements to the values returned to Erlang in an

erldriver

I l l l l
atom const

arg hack return

cpy fL1nc stash summary

l l I

vamap verbatim xtra_rleturn
I L
xtri’;_error xtria_ok
xtra_list xtra_tuple xtra_val

\/@\/

Figure 4: Diagram of EDTK XML element hierarchy.

arbitrarily-formatted tuple. Defining a 1-to-1 mapping for a
variable-length list is not feasible, so the xtra_list element
specifies the name of the C function that will create the list.

5.3.4 Theatom, const, cpy, hack, stash, summary, and

verbatim Elements
These elements play roles in initializing various driver de-
faults, adding copyright and license notices, and inserting
verbatim code in strategic places in the C and Erlang tem-
plates.

6. EXAMINATION OF ASAMPLE DRIVER
The XML file shown in Appendix A is a complete EDTK
XML specification file for creating a driver for a very small
portion of the standard C library.®

The EDTK driver generator exposes all of the underlying
C function’s arguments and return value (if non-void). If
a traditional Erlang interface for the driver is desired, for
example to use a list of atoms to specify options to a C
function that utilizes a bitmask for those options, it must
be written separately.

The following subsections will focus on linked-in drivers.
Significant differences with the pipe driver will be addressed
in section 6.6.

6.1 Step 1: Erlang side calls the port

All data passed from Erlang to the driver port must be seri-
alized, regardless of whether the port interfaces with a pipe
or linked-in driver. Like the data passed to other Erlang I/O
functions, this data must be in the form of what is hereafter
called an “I/O list.”

An I/0 list is a list comprised of binary terms, integer terms
with values between 0 and 255, and other I/O lists. For
example, [0, 1, [[2, [1], <<254, 255>>]] is an I/O list
that is five bytes long. A single binary, such as <<1>>, is
also considered a valid 1/O list: there is no need to enclose
it in a list like [<<1>>] to make it a valid I/O list.

The Erlang function for each library function serializes the
function’s arguments into an I/O list. The first byte of the

3 Although a symbol for 1stat () is often found in libc, it is
not officially part of the standard C library.

I/0O list encodes the C library function number. Function
arguments follow, encoded following these rules:

e Integers, including value map indexes, are serialized
according to the XML attributes on the argument el-
ement which specify whether the integer is signed and
how many bits to use. If unspecified, the integer is
assumed to be a 32-bit unsigned value.

e I/0 lists first have their total length in bytes calcu-
lated. This size is encoded as a 32-bit unsigned integer.
The lists’s contents follow immediately afterward.

e Integers greater than 32 bits and all floating point val-
ues are not currently supported.

Pattern matching on the atom member of {valmap NAME,
Index} verifies that the term is of the proper type for a
particular function argument. The Index integer is what is
actually serialized and sent to the driver.

By definition, C arrays of any data type are stored in a single
contiguous piece of memory. The underlying data in an I/O
list is not contiguous, unless it is a single binary term. Since
something must make arrays contiguous to match the driver
C function’s expectation, the Erlang side performs this task
using list_to_binary/1.

The resulting I/O list is then sent to the port using port_-
command/2, which will send the data to the pipe driver’s
external process using the writev() system call or invoke
the linked-in driver’s outputv entry function. For linked-
in drivers, using the outputv entry function avoids making
an extra data copy that port_control/3 and port_call/3
require.

6.1.1 Items of note iBample.xml

The malloc_int/2 function calls the same C function as
malloc/2 does, but the handling of the return value is quite
different. malloc/2 returns a value map, whereas malloc_—
int/2 demonstrates returning a pointer as an unsigned in-
teger. This pointer-as-integer return style is how pointers
are handled by Perl’s XS, Python, and extensions gener-
ated by SWIG. The malloc_int/2 function demonstrates
this method can also be supported.

Both fopen() and 1stat () have arguments that expected to
be NUL-terminated. The nulterm="1" attribute will cause
the Erlang template to append a NUL byte to these argu-
ments before serializing them.

The size argument has been removed from fwrite’s signa-
ture to demonstrate the use of a hack element to hard-code
size’s value to be 1.

The 1stat definition uses the attribute noerlcall="1" to
remove the struct stat argument from the Erlang version
of the function. The C driver code provides the necessary
struct stat buffer; there is no need for Erlang to have
knowledge about it.

6.2 Step 2: C side deserializes arguments

The C template’s implementation of the driver’s outputv
entry function is responsible for three things:

1. Deserialize the arguments and copy them into a call-
state_t structure.

2. Determine which library function should be called.

3. Determine if that function should be executed by the
virtual machine’s main thread or by some other thread.

The deserialization task is straightforward, except in the
case of value maps. The value map index, passed in seri-
alized form, is decoded and used an index into the appro-
priate value map table. The value stored there is checked
for validity and, if valid, the real data value is copied to the
appropriate C data structure.

The library function to be called is specified by the first byte
in the serialized call data. The choice of which thread to use
is made according to the driver’s XML specification.

If any arguments are improperly formatted, outputv will
return the message {Port, error, badarg} to the caller.

6.2.1 Items of note iBample.xml

A special XML element, called hack, is used by fwrite’s
description to initialize the argument that was intentionally
omitted from the Erlang function’s signature. A hack’s code
may be arbitrary C code.

The variable c is a pointer to a callstate_t structure used
to store all data used by the C extension function. Two
substructures, i and o, are used input and output values,
respectively. This is one of several examples that demon-
strates that some knowledge is necessary of how EDTK cre-
ates driver glue code.

6.3 Step 3: Executing the extension function
Step two has already prepared all input arguments and stor-
age for output data. Executing the C extension function is
straightforward. The other work done in this step is evaluat-
ing the return value expectation condition, if one is defined.

If the expectation test evaluates true, the basic status atom
ok is returned to Erlang; otherwise, error is returned. If the

expectation is false, the expectation error value is captured
immediately after executing the C function by the same
thread that called the function, ensuring that the correct
thread-specific value, such as errno, is returned to Erlang.

Expectation tests should be used whenever value maps are
used. Without an expectation condition, an error value (or
worse, garbage) may be stored in the value map table and
then used by subsequent driver calls.

6.3.1 Items of note iBample.xml
The malloc_int description has no expectation, so the Er-

lang side must determine if the C function succeeded or
failed.

The calculation of the error status value is complicated by
ferror()’s limited utility. It is possible, though not likely,
that fread() or fwrite() failed for reason other than a
failed system call, so errno’s value may not explain what
went wrong. So a value of 0 is returned when end of file is
reached and —1 otherwise.

6.4 Step 4: Driver returns data to Erlang

All return values are sent to Erlang by the driver’s ready_-
async entry function, regardless of the driver’s type or thread
usage. If a return value more complicated than an atom, bi-
nary, or integer is desired, a xtra_return element must be
used to define the structure of the return term.

6.4.1 Items of note iBample.xml

The Erlang return value for 1stat returns a handful of the
data actually found in a struct stat structure: st_mode,
st_mtimespec, and st_size. Returning only these structure
members avoids problems of structure members not found
in all operating systems as well as problems returning very
large integers (see also section 6.5).

6.5 Step 5: Erlang receives result term from
port

The current receive clause used to fetch the return value
from the driver is intentionally very simple:

1. The driver always returns a 2-tuple or 3-tuple.
2. The first element is always the port’s identifier.

3. The second element is either the atom ok or the atom
error.

4. The third element, if present, is an arbitrary Erlang
term.

There is no support currently for returning true unsigned 32-
bit integers and “bignum” values (including floating point):
they are not supported by driver_output_term(). One pos-
sible work-around is to return those values to Erlang as bi-
naries using agreed-upon formatting, and they can be dese-
rialized by the Erlang side after receipt.

6.6 EDTK Pipe Drivers

There are only two differences between linked-in drivers and
pipe drivers that driver writers care about. First, pipe driver
code executes in an operating system process separate from
the virtual machine. Second, pipe drivers must serialize
their output: linked-in drivers have an option to create terms
and send them directly to an Erlang process’s mailbox.

EDTK uses a program called pipe-main that hides these
differences from the EDTK-generated dynamically-loadable
library created for linked-in driver usage. It implements all
the virtual machine’s functions that an EDTK driver uses
(primarily memory management functions).

An EDTK-generated driver pushes its output term onto a
stack structure, then calls driver_output_term() to deliver
the term. The pipe-main executable’s version of this func-
tion pops values off this stack and serializes the data instead.
Template code on the Erlang side deserializes the data be-
fore returning the original output term to its caller.

7. EXPERIENCE WITH REAL LIBRARIES
AND APPLICATIONS

The EDTK driver generator has been used to create fully-
functional drivers for several libraries. Each has triggered
new EDTK features because of their variety of APIs and
the data structures they manipulate. Libpcap and Berke-
ley DB have been particularly challenging to support, but
they were chosen specifically for their complexity: if EDTK
can successfully generate drivers for them, it will have the
capability to support many other “real-world” libraries.

7.1 First Driver: simplel_drv

The simplel_drv driver is the first one developed using
EDTK. It was created to discover the basic tasks that EDTK
ought to do. As such, it is much more useful for finding bugs
and acting as the target for most of EDTK’s regression tests
than something that a developer would use to do real work.

The functions implemented by the driver are a mix of func-
tions written specifically for unit and regression testing, func-
tions from the standard C library, and several UNIX system
calls.

7.2 Libnet

Libnet [9] is a collection of platform-independent functions
for constructing network protocol packets and transmitting
them. Half of the library provides a platform-independent
API for transmitting network data at ISO network layers 2
and 3 for Ethernet and IP, respectively. Libnet’s encapsula-
tion of operating system-specific minutiae of using so-called
“raw” sockets is extremely useful.

The other half of the library contains functions for creating
various types of network packets and headers. The power
of Erlang’s bit syntax makes this part of the library less
appealing, so it is not currently implemented by the driver.

7.3 libpcap
Libpcap [10] provides a platform-independent interface for
capturing network packets (also often called “packet sniff-

ing”). Broadcast media, point-to-point interfaces, and loop-
back interfaces are all accessible via libpcap.

Libpcap’s API glosses over many platform-specific details,
but it cannot hide run-time differences that various UNIX
platforms exhibit when running libpcap’s code. The differ-
ences alone between platforms running Linux 2.2, which uses
the “packet socket” mechanism, and FreeBSD 4.5, which
uses the Berkeley Packet Filter (BPF) [11], are large and
vexing. It is no surprise that this library creates several
problems for a linked-in driver. A few examples include:

e Some platforms cannot guarantee that the libpcap’s
packet read timeout will occur until after at least one
packet has been received, and some cannot guarantee
that the packet read timeout will happen at all.

e FreeBSD’s timeout behavior is further dependent on
whether or not the application uses Pthreads or not.

e Several BSD platforms cannot use the select() sys-
tem call on a BPF file descriptor and get meaningful
results.

To be as portable as possible, the EDTK libpcap driver
compromises by performing all potentially-blocking opera-
tions in a separate thread by using the virtual machine’s
worker thread pool. Unfortunately, this compromise in turn
causes problems with the virtual machine’s asynchronous
work scheduling algorithm. For example, the efile drv
driver is used for local file system I/O. A file I/O opera-
tion may scheduled for execution by the same thread that
is currently blocked on a libpcap driver operation, even if
other threads in the work pool are idle.

7.4 ethbridge

Ethbridge is an Erlang application that uses both the libnet
and libpcap drivers to turn an Erlang node with two or more
Ethernet interfaces into an Ethernet bridge. ETS tables are
used to keep track of which MAC addresses are reachable on
each side of the bridge. Ethernet broadcast and multicast
packets are automatically forwarded to the other side(s) of
the bridge.

A small amount of testing has been performed using FTP to
measure Ethbridge’s speed when transferring a single large
file across the bridge. The machine running Ethbridge is
a PC with an AMD K6 233MHz processor and two Net-
gear Fast Ethernet cards running FreeBSD 4.5. Ethbridge
can forward 920 packets/second using linked-in libnet and
libpcap drivers and 540 packets/second using both as pipe
drivers.

The ping program was used to measure single packet round-
trip latency. Using linked-in drivers, round-trip times ranged
from 2.11-4.41 milliseconds, averaging 2.57 ms (¢ = 0.32
ms). Using pipe drivers, round-trip times ranged from 3.09-
13.6 ms, averaging 3.89 ms (0 = 2.6 ms). Both tests leave
the CPU 0% idle. Using FreeBSD’s kernel-based bridging
for comparison, round trip times ranged from 0.436-1.06
ms, averaging 0.868 ms (¢ = 0.11 ms) while leaving the
CPU 93% idle.

7.5 Berkeley DB

Berkeley DB [12] is an embedded, key-value database now
developed and supported by Sleepycat Software. It is a com-
plex library containing over 160 member functions, mak-
ing it the biggest “real-world” driver yet attempted with
EDTK. In addition to key-value tables, Berkeley DB also
supports cursors, secondary key indexes, transactions (in-
cluding nested transactions), deadlock detection, and a repli-
cation service.

The author’s first attempt to create an Erlang driver for
Berkeley DB took approximately 60 man-hours of effort to
interface 36 members of the API. The Berkeley DB driver
developed with EDTK is still under development. However,
it currently supports 49 API member functions after approx-
imately 24 man-hours of effort. The majority of that time
was spent fixing generator template bugs and adding func-
tionality necessary to support Berkeley DB’s API, rather
than actually crafting and debugging the XML specification.

Although Berkeley DB can be used safely in multi-threaded
environments, it restricts which threads can use cursors and
operate within transactions. This complexity is an excellent
motivator for expanding and debugging EDTK’s support for
asynchronous linked-in drivers.

8. FUTURE WORK

At the time of this writing, EDTK’s GSLgen-based code
generator is still very young. Sometime in the not-so-distant
future, it will be worth analyzing whether to continue using
GSLgen or to shift development effort to SWIG or perhaps
another open-source tool.

An EDTK-generated driver assumes that the Erlang pro-
cess calling the driver will block waiting for the C exten-
sion function to finish. A general driver framework would
permit Erlang to make multiple simultaneous calls to the
driver and retrieve the results asynchronously. Also, sev-
eral of the linked-in driver’s API entry functions are not yet
implemented, making it infeasible for use by drivers that
wish to perform I/O managed by the virtual machine’s I/O
infrastructure.

EDTK does not yet provide any explicit support for exten-
sions based on C++ libraries or support for drivers on non-
UNIX platforms. Neither are a priority for this author, but
support for C++ libraries and Microsoft Windows platforms
undoubtedly are priorities for other EDTK users.

It would be wonderful if EDTK could support linked-in
driver code that in turn call Erlang functions. As an ex-
ample from the Berkeley DB library, the driver could use an
Erlang function as a sorting callback function to determine
if two keys are identical.

9. CONCLUSION

The EDTK started as a collection of useful functions and
macros to assist the development of Erlang drivers. It quickly
turned into a full-fledged code generator and has surpassed
the design goals listed in section 5.1.

1. The GSLgen file generation tool is largely responsible
for the rapid development of the project. Including
debugging time, the EDTK code generator was ca-
pable of supporting simple call-by-value C functions
after less than 30 man-hours of effort, most call-by-
reference C functions after 70 man-hours, and using
worker threads after 90 man-hours.

2. EDTK can now automatically take care of driver im-
plementation details such as data serialization, output
term creation, preserving single-assignment semantics,
and utilizing asynchronous work threads. Drivers for
simple C libraries require no additional code to be writ-
ten manually. The Berkeley DB driver, with 49 of its
approximately 160 API functions supported, requires
an additional 150 lines of code to support the 5,150 line
driver module created from a 1,000 line XML specifi-
cation.*

3. The same shared library created by EDTK can be used
directly as a linked-in driver or as a pipe driver run by
the pipe-main program in an external process.

The value map mechanism has been particularly useful. A
value map’s automatic resource cleanup is vital to avoid
long-term resource starvation, but it is also very convenient
from the programmer’s perspective: all cleanup tasks are
taken care of by a one-line statement to close the port. In
addition, it is very difficult to pass an invalid data value into
a driver, greatly reducing the number of crashes caused by
dereferencing invalid pointers given to the driver by Erlang.

10. AVAILABILITY

The Erlang Driver Toolkit is freely available under a BSD-
style open source license. Drivers generated by EDTK have
been tested on FreeBSD and Linux platforms; porting to
other UNIX platforms that support Erlang is not expected
to be difficult. Further documentation, full source code, and
development community information is available at [5].

11. ACKNOWLEDGMENTS

I owe many thanks to everyone who reviewed this paper, es-
pecially in its early, ugly drafts: the workshop review com-
mittee, Francesco Cesarini, Chris Halverson, Mark Henning,
Lennart Ohman, and Torbjoérn Tornkvist. Nick Christenson
went far beyond the call of duty with his helpful comments.
Finally, thanks to Carolyn Lystig and Louise Lystig Fritchie
for their copyediting finesse; any lingering errors are mine
alone.

12. REFERENCES
[1] D. M. Beazley. SWIG : An Easy to Use Tool for
Integrating Scripting Languages with C and C++. In
4th Annual Tcl/Tk Workshop Conference Proceedings.
The USENIX Association, July 1996. See also:
http://wuw.swig.org/.

[2] T. Bray, J. Paoli, and C. M. Sperberg-McQueen.
Extensible Markup Language (XML) 1.0, 10 Feburary
1998. See: http://www.w3.org/TR/REC-xml.

4These figures include all comment lines.

[3] F. P. Brooks, Jr. The Mythical Man-Month: Essays on
Software Engineering. Addison-Wesley, 20"
anniversary edition, 1995.

[4] The Erlang Questions electronic mailing list. See:
http://wuw.erlang.org/faq.html for subscription
information and access to list archives.

[5] S. L. Fritchie. EDTK: The Erlang Driver Toolkit. See:
http://wuw.snookles.com/erlang/.

[6] GSLgen: a general-purpose file generator. See:
http://wuw.imatix.com/html/gslgen/.

[7] S. Hillier and D. Mezick. Programming Active Server
Pages. Microsoft Press, Redmond, Washington, 1997.

[8] S. Hinde. Personal correspondence.

[9] Libnet: a library constructing and injecting network
packets. See:
http://wuw.packetfactory.net/projects/libnet/.

[10] libpcap: a packet capture and filtering library. See:
http://wuw.tcpdump.org/.

[11] S. McCanne and V. Jacobson. The BSD Packet Filter:
A New Architecture for User-level Packet Capture. In
USENIX Winter 1993 Conference Proceedings. The
USENIX Association, January 1993.

[12] M. Olson, K. Bostic, and M. Seltzer. Berkeley DB. In
USENIX Annual Technical Conference. The USENIX
Association, June 1999.

[13] PHP: an HTML-embedded scripting language. See:
http://wuw.php.net/.

[14] SWIG 1.1 User Manual. See:
http://wuw.swig.org/doc.html.

[15] Torbjérn Térnkvist. IG: The Interface Generator. See:
http://www.bluetail.com/ tobbe/ig/.

APPENDIX
A. SAMPLE EDTK XML SPECIFICATION
FILE

This appendix contains the contents of the file sample.xml,
an EDTK XML specification file that describes the inter-
face for several well-known standard C library functions and
UNIX systems calls. Together with the definition for the
peek() function (see Appendix B), the EDTK driver gener-
ator creates all of the code required to implement these func-
tions as an Erlang driver. Both pipe and linked-in drivers
are fully supported.

<?xml version="1.0"7>

<erldriver name="sample_drv" abbrev=""
default_async_calls="1">

<summary>Examples for PLI2002 paper</summary>

<atom name="mini_stat"/>

<verbatim place="top_cpp_stuff">
#include &1lt;stdio.h>

#include <stdlib.h>

#include &1lt;errno.h>

#include <sys/stat.h>
</verbatim>

<func name="malloc" async_op="0">

<arg name="size" ctype="size_t"/>

<return name="ret_ptr" ctype="void *"
valmap_name="ptr" valmap_type="start"
expect="!= NULL" expect_errval="errno"/>

</func>

<func name="malloc_int" async_op="0" cname="malloc">

<arg name="size" ctype="size_t"/>

<return name="ret_ptr" ctype="void *"
etype="integer" casttoint="1"/>

</func>

<func name="free" async_op="0">
<arg name="ptr" ctype="void *"
valmap_name="ptr"/>
<return ctype="void"
valmap_name="ptr" valmap_type="stop"/>
</func>

<func name="peek" async_op="0">
<arg name="ptr" ctype="void *"
valmap_name="ptr"/>

<arg name="offset" ctype="int"/>

<arg name="len" ctype="int" noccall="1"/>

<return name="ret_char_p" ctype="char *"
etype="binary" valtype="static_buf"
val="c->o.ret_char_p"
offset="0" length="c->i.len"/>

</func>

<func name="fopen">
<arg name="path" ctype="char *"
ser_type="binary" nulterm="1"/>
<arg name="fmode" ctype="char *"
ser_type="binary" nulterm="1"/>
<return name="stream" ctype="FILE *"
valmap_name="FILE" valmap_type="start"
expect="!= NULL" expect_errval="errno"/>
</func>

<func name="fread">
<arg name="ptr" ctype="void *"
valmap_name="ptr"/>
<arg name="size" ctype="size_t"/>
<arg name="nmemb" ctype="size_t"/>
<arg name="stream" ctype="FILE *"
valmap_name="FILE"/>
<!-- ferror() not very helpful, -1 good enough? -->
<return name="ret_size_t" ctype="size_t"
expect="> 0"
expect_errval="feof (c->i.stream) ? 0 : -1"/>
</func>

<!-- Drop size arg, force it = 1 via hack element -->
<func name="fwrite">

<arg name="ptr" ctype="void *"
valmap_name="ptr"/>
<arg name="size" ctype="size_t" noerlcall="1"/>
<arg name="nmemb" ctype="size_t"/>
<arg name="stream" ctype="FILE *"
valmap_name="FILE"/>
<return name="ret_size_t" ctype="size_t"
expect="== (c->i.size * c->i.nmemb)"
expect_errval="feof (c->i.stream) ? 0 : -1"/>
<hack place="post-deserialize" type="verbatim">
c->i.size = 1;
</hack>
</func>

<func name="fclose">
<arg name="stream" ctype="FILE *"
valmap_name="FILE"/>
<return name="ret_int" ctype="int"
valmap_name="FILE" valmap_type="stop"/>
</func>

<func name="lstat">

<arg name="path" ctype="char *"
ser_type="binary" nulterm="1"/>

<arg name="sb" ctype="struct stat"
noerlcall="1" argtype="out"/>

<return name="ret_int" ctype="int"

xreturn="mini_stat"/>
</func>

<valmap name="ptr" ctype="void *"
maxsize="32" initial_val="NULL"
cleanup_func="free"/>

<valmap name="FILE" ctype="FILE *"
maxsize="32" initial_val="NULL"
cleanup_func="fclose"/>

<xtra_return name="mini_stat">
<xtra_ok>
<!-- Create {A, {B, C}, D} -—>
<xtra_val etype="tuple">
<xtra_val etype="integer"
val="c->0.sb.st_mode"/>
<xtra_val etype="tuple">
<xtra_val etype="integer"
val="c->o0.sb.st_mtimespec.tv_sec"/>
<xtra_val etype="integer"
val="c->o0.sb.st_mtimespec.tv_nsec"/>
</xtra_val>
<xtra_val etype="integer"
val="c->o.sb.st_size"/>
</xtra_val>

</xtra_ok>
<xtra_error>
<!-- EDTK provides __expect_errval -->

<xtra_val etype="integer"
val=”c—>o.__expect_errval"/>
</xtra_error>
</xtra_return>

</erldriver>

B. ADDITIONAL C CODE FOR SAMPLE
DRIVER

This appendix contains the contents of the file sample-
additional.c, which defines the one function used by sam-
ple.xml that is not found in the standard C library.

char *
peek(void *ptr, int offset)
{
return ((char *) ptr) + offset;

}

C. FILECOPY FUNCTION IN ERLANG

This appendix contains the contents of the file filecopy.erl
Tt uses the driver described by sample.xml in Appendix A to
implement a file copying function in the style of the Python
function shown in Figure 1. Despite using malloc() and
fread(), the use of value maps preserves single-assignment
semantics.

-module(filecopy) .

-define (DRV, sample_drv).
-define (BUFSIZ, 8192).

-export ([copy/2]) .

copy(Src, Dst) ->

{ok, Port} = ?DRV:start(),
{ok, SrcF} ?DRV:fopen(Port, Src, "r"),
{ok, DstF} ?DRV:fopen(Port, Dst, "w"),
{ok, Buf} = ?DRV:malloc(Port, ?BUFSIZ),
RFun = fun () ->

?DRV:fread(Port, Buf, 1, ?BUFSIZ, SrcF) end,
WFun = fun (N) —>

?DRV:fwrite(Port, Buf, N, DstF) end,
Val = copy2(RFun, WFun),
%% Shutdown will automatically close
%% files and free the buffer.
?DRV:shutdown (Port),
Val.

copy2(RFun, WFun) ->

copy2(RFun, WFun, RFun()).
copy2(RFun, WFun, {ok, N}) ->

WFun(N) ,

copy2(RFun, WFun);
copy2(RFun, WFun, {error, 0}) ->

ok; % End of file
copy2(RFun, WFun, Error) ->
Error.

